ADIFOR: A FORTRAN SYSTEM FOR
PORTABLE AUTOMATIC DIFFERENTIATION"

Christian Bischof
Andreas Griewank

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, Illinois 60439
Preprint MCS-P317-0792

Abstract

Automatic differentiation provides the foundation
for sensitivity analysis and subsequent design optimiza-
tion of complex systems by reliably computing deriva-
tives of large computer codes, with the potential of
doing it many times faster compared to current ap-
proaches. This paper describes the ADIFOR (Auto-
matic DIfferentiation of FORtran) system, a transla-
tor that augments Fortran programs with statements
for the computation of derivatives. ADIFOR accepts
arbitrary Fortran 77 code defining the computation of
a function and writes portable Fortran 77 code for the
computation of its derivatives. Our goal is to free the
computational scientist from worrying about the accu-
rate and efficient computation of derivatives, even for
complicated “functions” | thereby enabling him to con-
centrate on the more important issues of system model-
ing and algorithm design. This paper gives an overview
of the principles underlying the ADIFOR, system, and
comments on the power of automatic differentiation for
computing derivatives of implicitly-defined functions.

1 Introduction

The modeling of complex systems typically involves
an analysis or simulation phase where the stationary
state or the time evolution of the computer model is de-
termined from given parameters and initial conditions.
Subsequently, the computational results are compared

*This work was supported by the Applied Mathematical Sci-
ences subprogram of the Office of Energy Research, U. S. De-
partment of Energy, under Contract W-31-109-Eng-38 and by
the National Science Foundation under Cooperative Agreement
Number CCR-9120008.

This paper appeared in the Proceedings of the 4th Symposium
on Multidisciplinary Analysis and Optimization, AIAA Paper
92-4744, pages 433441, 1992.

Copyright ©1992 by the American Institute of Aeronautics
and Astronautics, Inc. The U.S. Government retains a nonex-
clusive, royalty-freelicense to publish or reproduce the published
form of this contribution, or allow others to do so, for U.S. Gov-
ernment purposes.

with observed data or analyzed in view of theoreti-
cal insights and expectations. These considerations
are likely to suggest numerical parameter adjustments
or even structural modifications in the computational
model.

In this process, it is critical to assess how changes
in the input parameters affect changes in the output.
Derivatives quantify this effect, and the task of analyz-
ing and adjusting the computational model usually re-
lies heavily on the availability of so-called sensitivities,
namely, the partial derivatives of intermediate or final
results with respect to input parameters or other inter-
mediate variables. In any case, the two-stage process of
sensitivity analysis and subsequent model adjustment
is likely to be repeated several times before the com-
putational results are judged to reflect the modeled
system state or yield a useful prediction of its time
evolution sufficiently closely. It should be obvious that
the accuracy of the computed sensitivities is critical in
guiding this adjustment and validation process.

However, in most applications, the sensitivity analy-
sis of such an analysis code is only the first step. Once
the model has been validated, one is interested in deter-
mining the values of the input parameters of the com-
putational model such as to achieve a desired physical
behavior. For example, a major thrust of the Com-
putational Aerosciences project of NASA’s High Per-
formance Computing and Communications Program
i1s multidisciplinary design and optimization of a high
speed civil transport [19]. A related activity is the
HiSATIR (High Speed Airframe Integration Research)
project which also has the optimization of a high speed
civil transport as a focus and encompasses a greater
breadth of technical disciplines influencing the design
of such a vehicle.

A key technology that is required for these optimiza-
tion procedures 1s the capability to calculate the sensi-
tivity derivatives of outputs from the various analysis
codes with respect to a set of design variables that are
adjusted by a nonlinear programming code to achieve
some optimal measure of vehicle performance. Other
applications arise in real-time simulation and control

of road vehicles, robots, and macromolecules, parame-
ter identification problems in geophysical systems and
accelerator beam tracing for the design of optical in-
struments and particle accelerators [17].

There are four approaches to computing derivatives:

By Hand: This is error-prone, and applicable only in
simple cases.

Divided Differences: The derivative of f with re-
spect to the ¢th component of # at a particular
point z, i1s approximated by either one-sided dif-
ferences

J f(x) o, flzo X hxe;)— fzo)
Ox; T=To +h

or central differences

3f(x)| A flzo+hxe;)— flzo— hxe)
aébi T 2h ’

Here e; is the ith cartesian basis vector. Com-
puting derivatives by divided differences has the
advantage that the function is only needed as a
‘black box’. The main drawback of divided differ-
ences 1s that their accuracy is hard to assess. A
small step size h i1s needed for properly approxi-
mating derivatives, yet may lead to numerical can-
cellation and the loss of many digits of accuracy.
In addition, varying scales of the z}s may require
different step sizes for the various parameters.

Symbolic Differentiation:

This functionality is provided by symbolic ma-
nipulation packages such as Maple, Reduce, Mac-
syma, or Mathematica. Given a string describing
the definition of a function, symbolic manipulation
packages provide exact derivatives, expressing the
derivatives all in terms of the intermediate vari-
ables. Symbolic differentiation is a powerful tech-
nique, but quickly runs into resource limitations
when applied to even moderately sized problems
(described by 100 lines of code, say).

Automatic Differentiation: Automatic differentia-
tion techniques rely on the fact that every func-
tion, no matter how complicated, is executed on a
computer as a (potentially very long) sequence of
elementary operations such as additions, multipli-
cations, and elementary functions such as sin and
cos. By applying the chain rule, e.g.

SO = (57w) (1001,

over and over again to the composition of those
elementary operations, one can compute deriva-
tive information of f exactly and in a completely
mechanical fashion.

if x(1) > 2 then
a = x(1)+x(2)

else
a=- x(1)/(x(2)*x(2)*x(2))
end if
doi=1, 2
a = a*x(i)
end do
y(1) = a/x(2)
y(2) = sin(x(2))

Figure 1: Sample Program for a Function f:z +—y

The paper is structured as follows. The next sec-
tion gives an introduction into automatic differentia-
tion, and in section 3 we give a brief overview of the
functionality of the ADIFOR, automatic differentiation
system. Section 4 elaborates on the connection be-
tween automatic differentiation and the computation
of derivatives of implicitly defined functions. Lastly, we
comment on some future improvements of ADIFOR.

2 Automatic Differentiation

We illustrate automatic differentiation with an ex-
ample. Assume that we have the sample program
shown in Figure 1 for the computation of a function
f:R? — R2. Here, the vector x contains the indepen-
dent variables; and the vector y contains the dependent
variables. The function described by this program is
defined except at x(2) = 0 and is differentiable except
at x(1) = 2.

By associating a derivative object Vt with every
variable t, we can transform this program into one
for computing derivatives. Assume that Vt contains
the derivatives of t with respect to the independent

variables x,
ot
Vt = (ox(1)) :
2%x(2)

We can propagate those derivatives by using elemen-
tary differentiation arithmetic based on the chain rule
(see for example [23] for more details). For example,
the statement

a=x(1)+x(2)

implies

Va=Vx(1)+ Vx(2).
The chain rule, applied to the statement
y(1) = a/x(2),
implies that

Vy(l) = 8;(:) * Va4 gzg) * Vx(2)

)
(

1.0/x(2) * Va — (a/(x(2) * x(2))) * Vx(2).

tl=-y

t2 =z % z

t3 = t2 % z
w=1t1/ 13

tlbar = (1 / t3)
t3bar = (- t1 / t3)
t2bar = t3bar * z

zbar = t3bar * t2

zbar = zbar + t2bar * z
zbar = zbar + t2bar * z
ybar = - tilbar

Figure 2: Reverse Mode Computation of

(ybar, zbar) = (g—z, gu)

Elementary functions are easy to deal with. For exam-
ple, the statement

¥(2) = sin(x(2))
implies

* Vx(2) = cos(x(2)) * Vx(2).

Straightforward application of the chain rule in this
fashion then leads to the so-called forward mode of au-
tomatic differentiation, which propagates the deriva-
tiwes with respect to the independent variables.

Another way of automatic differentiation 1s the so-
called reverse mode, which propagates the deriwvatives
of the final result with respect to an intermediate quan-
tities. These quantities are usually called adjoints. For
illustration sake, let us consider the statement

w=—y/(z*z*z).

In the reverse mode, let tbar denote the adjoint object
corresponding to t. The goal is for tbar to contain the
derivative %—f. We know that wbar = g—g =1.0. We
can compute ybar and zbar by applying the follow-
ing simple rule to the binary statements executed in

computing w, but in reverse order:

f(t), then tbar += sbar * (df / dt)
f(t,u), then tbar += sbar * (df /dt)
ubar += sbar * (df /du)

if s

if s

Using this simple recipe (see [15, 23]), and applying
straightforward optimizations (see [2] for a more de-
tailed description), we generate the so-called adjoint
code shown in Figure 2 for computing w and its deriva-
tives.

If the statement for the computation of w was em-
bedded into a larger computation, one can then exploit
the fact that

Vw:a—y*Vy—l—g—Z*Vz.

if x(1) > 2.0 then
Va = Vx(1) + Vx(2);
a = x(1)+x(2);
else
t1 = - x(1); t2 = x(2) * x(2);
t3 = t2 * x(2); tibar = (1 / t3);
t3bar = (- t1 / t3); t2bar = t3bar * z;
zbar = t3bar * t2; zbar = zbar + t2bar * z;
zbar = zbar + t2bar * z; ybar = - tlbar;
Va = ybar * Vx(1) + zbar * Vx(2)
a=t1/t3;
end if
doi=1, 2
Va = x(1) * Va + a * Vx(1);
a=a * x(1);
end do
Vy(1) = 1.0/x(2) * Va - a/(x(2)*x(2)) * Vx(2);
y(1) = a/x(2);
Vy(2) = cos(x(2)) * Vx(2);
y(2) = sin(x(2))

Figure 3: Sample Program of Figure 1 Aug-
mented with Derivative Statements

Hence, after computing the “local” derivatives
(g—l;, %—f) of w with respect to z and y, one can then
easily compute Vw, the derivatives of w with respect to
x. That is, we “preaccumulate” the derivatives of the
right-hand side, and then use the chain rule to advance
the global computation. This hybrid approach saves
storage and computation compared to the straightfor-
ward forward mode whenever the number of variables
on the right-hand side of an assignment statement is
greater than two. Using this hybrid approach on the
code shown in Figure 1 we arrive at the pseudo-code
shown in Figure 3 for computing the derivatives of y(1)
and y(2).

The derivatives computed by automatic differentia-
tion are guaranteed to be reliable, unlike those com-
puted by divided difference approximations. Griewank
and Reese [18] have shown that in the presence of
round-off the derivative objects computed by auto-
matic differentiation are the exact result of a nonlinear
system whose elementary partial derivatives have been
perturbed by factors of at most (1+¢)?, where ¢ is the
relative machine precision.

We also mention that the automatic differentiation
approach can easily be generalized to the computation
of univariate Taylor series or multivariate higher-order
derivatives [10,23,16,4].

3 The ADIFOR Automatic Differentiation Tool

The automatic differentiation of computer arith-
metic has been investigated since before 1960. Since
then there have been various implementations of auto-

matic differentiation, and a recent survey can be found
in [20]. However, for the most part, they were con-
ceived by the need for accurate first- and higher-order
derivatives in a certain application. Distribution for
the mainstream of scientific computing was not a ma-
jor concern, and, since these tools for the most part
computed derivatives slower than divided difference
approaches, potential users were discouraged.

Recently, however, process towards a general-
purpose automatic differentiation tool competitive
with divided differences has been made with the de-
velopment of ADIFOR (Automatic Differentiation in
Fortran) [2,5,3,1]. ADIFOR provides automatic dif-
ferentiation for programs written in Fortran 77. Given
a Fortran subroutine (or collection of subroutines) de-
scribing a “function”, and an indication which vari-
ables in parameter lists or common blocks correspond
to “independent” and “dependent” variables with re-
spect to differentiation, ADIFOR, produces Fortran 77
code that allows the computation of the derivatives of
the dependent variables with respect to the indepen-
dent ones.

ADIFOR was designed from the outset with large-
scale codes in mind, and 1t uses the facilities of the
ParaScope Fortran environment [7,8] to parse the code,
and extract control flow and dependence flow informa-
tion. ADIFOR produces portable Fortran-77 code and
accepts almost all of Fortran-77, in particular arbitrary
calling sequences, nested subroutines, common blocks
and equivalences. The ADIFOR-generated code tries
to preserve vectorization and parallelism in the origi-
nal code, and employs a consistent subroutine naming
scheme which allows for code tuning, the exploitation
of domain-specific knowledge and the exploitation of
vendor-supplied libraries.

ADIFOR employs the hybrid forward/reverse mode
that was shown in the previous section. That is, for
each assignment statement, we generate code for com-
puting the partial derivatives of the result with respect
to the variables on the right-hand side, and then em-
ploy the forward mode to propagate overall derivatives.
The resulting decrease in complexity compared to a
straightforward forward mode implementation usually
is substantial. For example, the code for the blunt
body shock tracking problem by Shubin [25] needs to
compute the 190 x 190 Jacobian of a “function” de-
scribed by 1400 lines of Fortran code. When we ex-
ecute this code for a particular set of input values,
we execute a total of 1840 assignment statements that
were augmented with derivative computations. The
distribution of the number of variables in the right-
hand side of the assignment statements is shown in
Figure 4. We see that only 543 assignments involve
two variables, and as a result the hybrid mode used in
ADIFOR computes derivatives at roughly 69% the cost
of a straightforward forward mode implementation.

Supersonic Blunt Body Problem

600
500 B
400F Total = 1840 g

2

B

2 —

& 300 b

3*

200 R
100 H 1
H 1
6 8

0 2 4 10 12 14 16

Number of Variablesin Assignment

Figure 4: Number of Variables in Assignment
Statements

We also stress that ADIFOR uses the data flow anal-
ysis information from ParaScope to determine the set
of variables that require derivative information in ad-
dition to the dependent and independent ones. This
approach allows for an intuitive interface, and greatly
reduces the storage requirements of the derivative code.

ADIFOR-generated code can be used in various
ways: Instead of simply producing code to compute
the Jacobian J, ADIFOR produces code to compute
J * S, where the “seed matrix” S is initialized by the
user. So if S is the identity, ADIFOR computes the
full Jacobian, and if S is just a vector, ADIFOR com-
putes the product of the Jacobian by a vector. “Com-
pressed” versions of sparse Jacobians can be computed
by exploiting the same graph coloring techniques [12,
11] that are used for divided difference approximations
of sparse Jacobians.

The idea is best understood with an example. As-
sume that we have a function

J2
reR*—yeR

whose Jacobian J has the following structure (symbols
denote nonzeros, and zeros are not shown):

O
O o
J= o

> > >

O
O

So columns 1 and 2, as well as columns 3 and 4 are
structurally orthogonal, and in divided-difference ap-
proximations one could exploit that by perturbing both

nz = 2582

Figure 5: Sparsity Structure of 190 x 190
Blunt Body Problem Jacobian

nz = 2582

Figure 6: Sparsity Structure of Compressed
190 x 28 Blunt Body Problem Jacobian

x1 and x5 in one function evaluation, and both x3 and
z4 in the other. In ADIFOR we exploit this fact by
setting

OO ==
_ -0 O

For a more realistic example, the 190 x 190 Jacobian
of Shubin’s blunt body shock tracking problem has only
2582 nonzero entries and its structure is shown in Fig-
ure 5. Due to its sparsity structure, it can be condensed
into the “compressed Jacobian” shown in Figure 6 and
ADIFOR will compute this compressed Jacobian if the
seed matrix is initialized to the structure shown in Fig-
ure 7.

The running time and storage requirements of the

nz=190

Figure 7: Structure of ADIFOR Seed Ma-
trix Corresponding to Compressed Jacobian
in Figure 6

Sparc-2 RS/6000
Sparse DD 0.20 0.130
Compressed ADIFOR 0.13 0.025
Dense ADIFOR 0.85 0.056

Table 1: Performance of ADIFOR-generated
Derivative Code (seconds)

ADIFOR-generated code are roughly proportional to
the numbers of columns of S, so the computation of
Jacobian-vector products and compressed Jacobians
requires much less time and storage than the gener-
ation of the full Jacobian matrix. For example, on
the blunt body problem we observe the performance
shown in Table on Sun Microsystems SPARC 2 and
IBM RS/6000-550 workstations. The first line gives
the run-time of a sparse divided-difference approxima-
tion, based on the same coloring scheme as the “com-
pressed Jacobian” approach in the second line. The
third line shows the running time obtained if one treats
this Jacobian as a dense one and ignores sparsity; this
means that all derivative operations now are performed
with vectors of length 190 instead of 28. As expected,
performance suffers, although much less so on the IBM.
This is due to the superscalar architecture of this chip
and, we suspect, to efficient microcode implementa-
tions of multiplications by zero.

4 Differentiating Implicitly Defined Functions

In our experience most CFD codes in aeronautical
engineering compute flow and displacements fields by

fork=1,...do

compute preconditioner Pj

Zk41 = Rk — Pk F(Zk, l‘*)

if (||F(zx, 2+)|| small enough) stop
end for

Figure 8: Generic Iteration for Solving F(z, #.) =0

iterative procedures, which may converge very slowly
and often involve discontinuous adjustments of grids or
free boundaries. That is, for given x, we are solving a
nonlinear system

F(z,z.)=0 (1)

to find the value z, = z(z,) of the function implic-
itly defined by F'. The question is under what cir-
cumstances an auto-differentiated version of the code
implementing the rootfinding process computes the de-
sired derivatives z, = g_i|x=x*' For the sake of discus-
sion let us assume that our iteration for solving (1) has
the form shown in Figure 8. This iteration converges
when

1= PPz 2| < p < 1 (2)

The notation F, (Fy) is shorthand for % (%). New-
ton’s method, for example, is a particular instance of
this scheme with P, = (%p:zk)—l.

The implicit function theorem tells us that at the

fixed-point (z., z.) we have
F.2 4+ Fy =0 (3)

and in fact a not too uncommon approach (the so-
called “semianalytic” approach) for obtaining z’ is
to compute (or approximate by divided differences)
F,(z,) and Fy(z.) and to solve the resulting linear
system (3) for z'. However, the reliability of this ap-
proach depends greatly on the conditioning of F(z.)
as well as the accuracy of F, and Fj.. In the following
discussion we assume that a “prime” notation (like z’)
always denotes differentiation with respect to x.
Applying automatic differentiation to the generic it-
eration of Figure 8, we obtain the iteration shown in
Figure 9. Note that we have replaced the stopping cri-
terion based on ||F|| by one based on 4L While it is
natural to do so, this currently has to be done by hand.
Gilbert [14] and Christianson [9] show that this iter-
ation produces meaningful results for iterations such
as Newton’s method. Recently, we have been able to
extend these results (details will be given in a forth-
coming paper) and have shown that the simpler itera-
tion shown in Figure 10 also converges to the desired
derivative value z, when condition (2) is satisfied. The
difference between the approaches in Figures 9 and 10
is that in the latter we treat the preconditioner Pj as

fork=1,...do
compute preconditioner Py and P
S = — PLF(a1)
— Py (F.(zh, 24)2, + Fo(2p, 24))
if (||F.(zx, 24)2}, + Fr(2x, 24)|| small enough) stop
end for

Figure 9: Straightforward Iteration for Solv-
ing Fy(z, @)zt + Fp(ze,2.) =0

fork=1,...do

compute preconditioner Pj

Sy = 2= Pu (B (22, + For,2))

if (|| F,(2zx, 24)2}, + Fro (21, 2.]| small enough) stop
end for

Figure 10: Improved Iteration for Solving
FZ(Z*, x*)z; + Fx(z*a l‘*) =0

a constant and hence drop the P} F(zj, x.) term in the
update of Zl/c-l—l' This makes intuitive sense since in the
end F'(zp,x.) will converge to zero anyway, thereby
annihilating any contribution of P/. Also P} is likely
to involve higher derivatives that (according to the im-
plicit function theorem) play no role in the existence
of 2.

The implications of this observation for the speed of
derivative computations are noteworthy. For example,
in a Newton iteration, we would thus save ourselves the
work of differentiating through the matrix factorization
process, which is by far the dominant work of the itera-
tion process. Exploitation of this result at the moment
requires hand-modification of the ADIFOR-generated
derivative code to eliminate the derivative computa-
tions for P/. Depending on code modularity, this may
or may not be easy to do. We are experimenting with
“deactivation” concepts which would allow this trans-
formation to proceed in a more user-friendly fashion.

Another point worth mentioning is that it does not
make sense to start the derivative iterations until the
iterations for F'(z,z,) = 0 have essentially converged.
Obviously, the derivatives z, will not settle in until
the “function value” z, itself has. Again, this requires
hand-modification of the ADIFOR-generated deriva-
tive code, but the savings potential is significant. For
example, Figure 11 shows the convergence behavior of
the lift coefficient, which is implicitly defined as a func-
tion of the maximal airfoil thickness, the mach number,
the camber, maximal camber position, and the angle of
attack in Elbanna and Carlson’s transonic code [13] for

M =12,a =1 with an NACA 1406 airfoil. The line

Automatic Differentiation of Implicitly Defined Functions

[IHIVIH_oll

IFIVIF_ol

Relative Residual
=
S
T

Solving F(x,g(x))=0
107 Solving H(g_x) =F x +F_y*g x=0

g_xinitializedto O

15
10 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Iteration Number

Figure 11: Convergence Behavior of Func-
tion and Derivatives in Elbanna and Carlson’s

Code

Method Time
Finite Diffs 421
Delayed ADIFOR 217
ADIFOR from the beginning 838

Table 2: Run-Time of Various Derivative
Schemes for Elbanna/Carlson Code on Sparc-

2

labeled ||F||/||Fo|| plots the improvement of the func-
tion residual with respect to the initial residual. We
see that for the first roughly 900 iterations the nonlin-
ear root finder hardly improves the residual. There-
after, the convergence behavior is close to linear with
a convergence factor ¢ & 0.984. After iteration 1434,
the function residual had decreased by more than 8 or-
ders of magnitude and we started up the ADIFOR-ed
version of the iteration (corresponding to the version
in Figure 9), having initialized the derivatives z{ to
0. The line labelled ||H]||/||Ho|| shows the improve-
ment in the derivative residual and we stopped after
501 more iterations when we had decreased the deriva-
tive residual by four orders of magnitude. The result-
ing derivative value was (up to four digits) the same
as that obtained by divided difference approximations
with A = 1.0e — 8. As we can see, after the initial jump
(due to our starting value), the derivatives converge
linearly with a convergence rate that is comparable to
that of the function iteration.

By delaying starting up the derivative iteration, we
were able to realize substantial savings as shown in Ta-
ble 2. The scheme just described is significantly faster
than the divided-difference approximation for Elbanna

and Carlson’s code. On the other hand, had we not
delayed computation of derivatives, and differentiated
away while the function was really not converging yet,
it would have taken a total of 838 seconds.

In general, the theory of automatic differentiation
does so far not guarantee that the derivatives of iterates
converge to the correct limits in all cases of interest.
However, by monitoring the residual ||F,(zg, 24)2}, +
Fry(zr, 2.)||, we have a constructive criterion by which
to judge the progress (or stalling) of the derivative it-
eration process. Moreover, by judiciously deactivat-
ing certain variables one can implement various semi-
analytical schemes for sensitivity analysis that have
been developed and tested by aeronautical engineers
(see, e.g. [22,21,24]. Again, derivative convergence is
not a priori guaranteed, but 1t can be tested construc-
tively with little extra effort.

5 Future Work

Our goal is to further decrease the complexity of
computing derivatives, both in terms of man-hours and
cpu-seconds.

For example, at the moment we are experimenting
with a version of ADIFOR that in addition to comput-
ing the Jacobian values, also automatically computes
the location of the nonzero entries in the Jacobian. The
key observation is that all our gradient computations
have the form

vector = E scalar; * vector;.

)

By merging the structure of the vectors on the right-
hand side, we can obtain the structure of the vector
on the left-hand side. In addition, the proper use of
sparse vector data structures ensures that we perform
computations only with the non-zero components of
the various derivative vectors. For example, even with
a relatively simple implementation of “sparse merging
vectors” we obtained running times of 0.13 seconds on a
Sparc-2 and 0.043 seconds on the IBM RS6000/550 for
Shubin’s blunt body shock problem. These numbers
compare favorably with those shown in Table , in par-
ticular if one keeps in mind that no previous knowledge
of the sparsity structure was required in the “sparse
saxpy” approach. Of course the dynamic data struc-
tures required to support the automatic sparsity detec-
tion are more expensive to implement, but we found
that even though the final Jacobian has at most 19
nonzeros per row, the average number of nonzeros in
derivative objects was only 5.4 nonzeros. As a result,
the “sparse saxpy” approach performed only 5,537 ad-
ditions and 31,633 additions, whereas the “compressed
Jacobian” approach performed 134,428 additions and
185,948 multiplications, and hence 88% more flops.
The automatic detection of sparsity structures is a

unique capability of automatic differentiation and we
expect that it will greatly contribute to the develop-
ment of user-friendly optimization problem solving en-
vironments.

Another aspect that we have to address is that of in-
put and output. ADIFOR does not yet properly handle
file input and output (although there are ways to get
around this [6]). The reason is that we cannot trace
data dependencies through 1/0 statements. However,
in many MDO projects the codes modeling the various
disciplines have been developed and are maintained by
distinct groups on different platform. They may run
asynchronously and exchange data only through disk
files or even magnetic tapes. For example, grid de-
sign is often done with human interaction and the re-
sult 1s communicated to the structural or aerodynami-
cal code. Therefore, automatic differentiation must be
modular and respect the boundaries between various
system components without requiring a common run-
time system. This goal has been largely achieved in
ADIFOR even though automatic file transfer of deriva-
tive information is not yet possible.

In summary, we believe that as our efforts progress,
automatic differentiation will be able to compute
derivatives orders of magnitudes faster than current
approaches and be the catalyst enabling the solution
of MDO problems that were previously thought in-
tractable.

Acknowledgements

We would like to thank Alan Carle, George Corliss,
and Paul Hovland for many stimulating discussions
and their essential roles in the ADIFOR development
project. We would also like to thank Perry Newman
from NASA Langley and Greg Shubin from Boeing
Computing Services for making the test codes avail-
able and for sharing their knowledge with us.

References

[1] Christian Bischof, Alan Carle, George Corliss, and
Andreas Griewank. ADIFOR: automatic differen-
tiation in a source translator environment. ADI-
FOR Working Note #5, MCS-P288-0192, Math-
ematics and Computer Science Division, Argonne
National Laboratory, 1992. Accepted for publica-
tion in Proceedings of International Symposium
on Symbolic and Algebraic Computation.

[2] Christian Bischof, Alan Carle, George Corliss, An-
dreas Griewank, and Paul Hovland. Adifor: Gen-
erating derivative codes from Fortran programs.
ADIFOR Working Note #1, MCS-P263-0991,
Mathematics and Computer Science Division, Ar-
gonne National Laboratory, 1991. To appear in
Scientific Programming.

[3] Christian Bischof, George Corliss, and Andreas
Griewank. ADIFOR exception handling. ADI-
FOR Working Note #3, MCS-TM-159, Mathe-
matics and Computer Science Division, Argonne
National Laboratory, 1991.

[4] Christian Bischof, George Corliss, and Andreas
Griewank. Computing second- and higher-order
derivatives through univariate Taylor series. ADI-
FOR Working Note #6, MCS-P296-0392, Math-
ematics and Computer Science Division, Argonne
National Laboratory, 1992.

[5] Christian Bischof and Paul Hovland. Using ADI-
FOR to compute dense and sparse Jacobians. AD-
IFOR Working Note #2, MCS-TM-158, Mathe-
matics and Computer Science Division, Argonne
National Laboratory, 1991.

[6] Christian H. Bischof, Alan Carle, George Corliss,
Andreas Griewank, Paul Hovland, and Moe El-
Khadiri. Getting started with adifor. ADIFOR
Working Note #9, ANL-MCS-TM-164, Mathe-
matics and Computer Science Division, Argonne
National Laboratory, 1992.

[7] D. Callahan, K. Cooper, R. T. Hood, Ken
Kennedy, and Linda M. Torczon. ParaScope: A
parallel programming environment. International
Journal of Supercomputer Applications, 2(4), De-
cember 1988.

[8] Alan Carle, Keith D. Cooper, Robert T. Hood,
Ken Kennedy, Linda Torczon, and Scott K.
Warren. A practical environment for scientific
programming. IEEE Computer, 20(11):75-89,
November 1987.

[9] Bruce Christianson. Reverse accumulation and ac-
curate rounding error estimates for taylor series
coefficients. Optimization Methods and Software,
1(1):81-94, 1992.

[10] Bruce D. Christianson. Automatic Hessians by
reverse accumulation. Technical Report NOC
TR228, The Numerical Optimisation Center, Hat-
field Polytechnic, Hatfield, U.K., April 1990.

[11] T. F. Coleman, B. S. Garbow, and J. J. Moré.
Software for estimating sparse Jacobian matrices.

ACM Trans. Math. Software, 10:329 — 345, 1984.

[12] T. F. Coleman and J. J. Moré. Estimation
of sparse Jacobian matrices and graph coloring
problems. SIAM Journal on Numerical Analysis,
20:187 — 209, 1984.

[13] H.M. Elbanna and L.A. Carlson. Determination
of aerodynamic sensitivity coefficients in the tran-
sonic and supersonic regimes. In Proceedings of the

[16]

[20]

[22]

27th AIAA Aerospace Sciences Meeting, AIAA
Paper 89-0532. American Institute of Aeronautics
and Astronautics, 1989.

Jean-Charles Gilbert.
and 1terative processes. Optimization Methods and

Software, 1(1):13-22, 1992.

Automatic differentiation

Andreas Griewank. On automatic differentiation.
In M. Ir1 and K. Tanabe, editors, Mathematical
Programmang: Recent Developments and Applica-
tions, pages 83 — 108. Kluwer Academic Publish-
ers, 1989.

Andreas Griewank. Automatic evaluation of first-
and higher-derivative vectors. In R. Seydel, F. W.
Schneider, T. Kupper, and H. Troger, editors,
Proceedings of the Conference at Wurzburg, Aug.
1990, Bifurcation and Chaos: Analysis, Algo-
rithms, Applications, volume 97, pages 135 — 148.
Birkhauser Verlag, Basel, Switzerland, 1991.

Andreas Griewank and George F. Corliss, edi-
tors. Awutomatic Differentiation of Algorithms:
Theory, Implementation, and Application. STAM,
Philadelphia, Penn., 1991.

Andreas Griewank and Shawn Reese. On the cal-
culation of Jacobian matrices by the Markowitz
rule. In Andreas Griewank and George F. Corliss,
editors, Automatic Differentiation of Algorithms:
Theory, Implementation, and Application, pages
126 — 135. STAM, Philadelphia, Penn., 1991.

T. L. Holst, M. D. Salas, and R. W. Claus. The
NASA computational aerosciences program — to-
ward Teraflop computing. In Proceedings of the
30th Aerospace Sciences Meeting, pages AIAA Pa-
per 92-0558. American Institute of Aeronautics
and Astronautics, 1992.

David Juedes. A taxonomy of automatic differ-
entiation tools. In Andreas Griewank and George
Corliss, editors, Proceedings of the Workshop on
Automatic Differentiation of Algorithms: Theory,
Implementation, and Application, Philadelphia,
1991. STAM. To appear.

V. M. Korivi, A. C. Taylor, P. A. Newman, G. W.
Hou, and H. E. Jones. An incremental strategy
for calculating consistent discrete CFD sensitiv-
ity derivatives. NASA Technical Memorandum
104207, NASA Langley Research Center, Febru-
ary 1992.

P. A. Newman, G. J.-W. Hou, H. E. Jones, A. C.
Taylor, and V. M. Korivi. Observations on com-
putational methodologies for use in large-scale,
gradient-based, multidisciplinary design incorpo-
rating advanced CFD codes. NASA Technical

[24]

[25]

Memorandum 104206, NASA Langley Research
Center, 1992.

Louis B. Rall. Automatic Differentiation: Tech-
niques and Applications, volume 120 of Lecture
Notes in Computer Science. Springer Verlag,
Berlin, 1981.

G. R. Shubin. Obtaining “cheap” optimiza-
tion gradients from computational aerodynamics
codes. Applied Mathematics and Statistics Tech-
nical Report AMS-TR-164, Boeing Computer
Services, June 1991.

G. R. Shubin, A. B. Stephens, H. M. Glaz, A. B.
Wardlaw, and L. B. Hackerman. Steady shock
tracking, Newton’s method, and the supersonic
blunt body problem. STAM J. on Seci. and Stat.
Computing, 3(2):127 — 144, June 1982.

